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Abstract-Predictions are made of the lower limiting conditions of free convection in the vertical 
open thermosyphon of circular cross-section with uniform wall temperature, where the flow tends 
to zero and is superseded by conduction. The overall heat-transfer rate is then independent of tube 
length but proportional to radius, unless the length-radius ratio is below about l-8, in which case it 
depends also on temperature conditions at the closed end. The corresponding Rayleigh number, which 
is a function of the Prandtl number only, is estimated for non-metallic fluids and for a liquid metal. 

NOTATION 

a, tube radius; 

z 

length-radius ratio of tube I/a; 
externally-produced acceleration; 

I,¶ 
thermal conductivity; 
tube length; 

Nur, Nusselt number based on radius 
= Q/2&(7-0 - Tr); 

A& modified Nusselt number de&red in 
text ; 

NW, Nusselt number based on length 
= Q/27&(To - TI) = bNu,.; 

Pr, Prandtl number V/U; 
e, overall rate of heat transfer from the 

thermosyphon tube to the reservoir; 
R, distance from tube axis; 
r, dimensionless distance from tube axis, 

Rla; 
Ra,, Rayleigh number based on radius 

f/U0 - Tl)a3/va; T 
9 temperature; 

To, temperature at walls; 
Tl, temperature on the tube axis at the top 

end ; 
1, dimensionless temperature, (TO - T)/ 

(To - TI); 
t1, radius-based Rayleigh number/length- 

radius ratio =fp(To - T&$/d; 
X, distance from top end of tube; 
-y, dimensionless distance from open end, 

X/l. 

Greek symbols 
a, thermal diffusivity; 

B, coefficient of cubic expansion; 
V, kinematic viscosity. 

1. INTRODUCTION 

THE THEORETICAL and experimental researches 
of the last decade, stimulated by the projected 
applications of the free convection open thermo- 
syphon to (a) gas-turbine rotor-blade cooling 
and (b) the extraction of heat from nuclear 
reactors, have resulted in the accumulation of a 
great deal of information concerning the several 
flow regimes and the unusual heat-transfer 
characteristics of the open thermosyphon. The 
geometry of this system is such that a heated 
tube, closed at its lower end, opens into a 
reservoir of cool fluid. The heated fluid rises 
over the inner walls of the tube through con- 
vective action to be replaced by a returning core 
of cool fluid from the reservoir. 

The earlier investigations of Lighthill [l], 
Martin [2], and Hartnett and Welsh [3] were 
concerned with the study of fluids having 
Prandtl numbers greater than 0.6. More recent 
researches by Hartnett ef al. [4], Leslie and 
Martin [5], Bayley et al. [6], and Bayley and 
Czekanski [7] have included the study of liquid 
metals whose Prandtl numbers are of order 0.01. 
These liquids are especially useful as heat- 
transfer media where high heat fluxes and high 
temperatures are involved. This later work has 
directed attention to the significance of con- 
duction in the open thermosyphon, particularly 
in circumstances of high fluid thermal con- 
ductivity. 
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Conduction effects might also become pre- 
dominant at small Rayleigh numbers, such that, 
under isothermal wall conditions and for 
Pr 3 0.6, tr is less than about 4000, the radius- 
based Nusselt number being less than 3. Figure 1 
(reproduced from reference 5) shows that, for 
laminar flow, Nu, then varies linearly with tr, 
rather than according to the quarter-power 
relation, characteristic of boundary-layer flow, 
which otherwise prevails. Lighthill [l] has shown 
that in the linear range the boundary-layer has 
become so thick as to fill the tube; cool fluid thus 
mingles with this stream and becomes partly 
heated from the point of entry. This reduces the 
scale of the motion and the heat transfer. At 
values of ti marked by crosses in Fig. 1 as 
“similarity solutions” for three values of Pr, the 
local heat transfer falls linearly from a maxi- 
mum at the orifice to zero at the closed end of 
the tube. The velocity and temperature profiles 
are “similar” at different sections along the tube 
axis. For still smaller tl, flow extends down the 
tube to a section where heat transfer vanishes, 
below which the fluid is stagnant and at uniform 
temperature. As ti diminishes, the section 
referred to rises up the tube, so that the volume 
of stagnant fluid increases. 

Figure 1 suggests that the linear relation 
between Nu,. and t1 holds down to the point where 
both are zero, in which case the fluid would be 
stagnant throughout the tube. Another possi- 
bility suggests itself. If tl is small enough for 
convective motion to be restricted to the upper 

part of the tube, some heat may also be trans- 
ferred from the walls through the stagnant fluid 
by conduction, such that the overall heat transfer 
differs little from that shown in Fig. 1 fol 
t1 < 350, where only convection is considered. 
Then, at a sufficiently small value of ti (or Ra,,. 
for a given tube) > 0, the layer of fluid in 
laminar flow at the orifice becomes infinitely 
thin, so that virtually all heat transfer is by 
conduction. This situation, which would yield 
the lowest Nu, for convection, is the limiting 
case of zero flow. For smaller tl, the relation 
between Nu, and tl probably ceases to be lineal 
because then the radial temperature distribution 
at the orifice is no longer governed by convection. 

Predictions of NM, and Rar for the limiting 
case of zero flow form the subject of this paper. 
We therefore require a solution of the conduc- 
tion equation for a cylinder whose outside wall 
is maintained at a uniform temperature TO. This 
is greater than that of the axis, along which the 
temperature decreases to a minimum of Tl at the 
orifice. In addition to the isothermal base con- 
dition assumed in previous investigations, where 
the closed end is at TO, the effect of an adiabatic 
base is also considered. The thermal conductivity 
of the fluid is assumed to be uniform. The 
boundary condition at the open end is still 
determined by convective motion, even in the 
limiting case where away from the orifice there 
is no flow. While (as is here assumed to be the 
case) a linear relationship exists between Nu, 
and tl, Lighthill [l] has shown that, for Pr : : I, 

-I 2 3 4 5 6 

FIG. 1. Iaminar flow regimes in the open thermosyphon for non-metallic fluids. 
[J. Mech. Engng. Ski. 1, 184 (1959)]. 
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the orifice radial temperature profile is that of the 
“similarity solution”. (As derived by Leslie and 
Martin [5], this is given by equation (12) and 
illustrated in Fig. 3.) The implied insensitivity 
of the orifice radial temperature distribution to 
differing flow regimes within the tube, for 
tt < 4000, strengthens the justification for its 
use in the present case. The conduction equation 
is solved accordingly for Nur below, and the 
lower limit of Rar is subsequently estimated from 
knowledge of the linear relation between tl and 
Nu, at low tl. 

2. HEAT CONDUCTION EQUATION 

Cylindrical polar co-ordinates X and R are 
used, where the X-axis coincides with the axis 
of the cylinder shown in Fig. 2. X is measured 
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FIG. 2. Co-ordinate system for thermosyphon tube. 

from an origin at the top, and R is the radial 
distance from the X-axis. For steady, axi- 
symmetric conditions, the heat conduction 
equation is 

ST 5s+f;!+g= 0 

The boundary conditions are: 

R=O, iG=O, forallX 

R = 0, X = 0, T = Tl (3) 

R = a, T = TO, for all X (4) 

together with the orifice radial temperature 
profile for the convective laminar “similarity 
solution” specified by (12) below. If the base of 
the cylinder is adiabatic, we have also 

X = I, 
8T 
ax = 0 for all R (5) 

but if the base is isothermal, as in previous work 

X = I, T = TO for all R (6) 
Conditions (5) and (6) will be seen below to lead 
to different results unless b is somewhat greater 
than unity. 

The above equation and boundary conditions 
can be reduced to dimensionless form by the 
substitutions 

X = Ix, R = ar, T = TO - t(To - TI) (7) 

Equation (1) then becomes 

a2t 1 at 
3y2+;~+g2=o (8) 

while the boundary conditions can be written 

r = 0, ar at = 0 , for all x (9) 

r=O, x=0, t=l (10) 
r= 1, t = 0, for all x (11) 

?,+I = 1 - 2*394r2 + 2*632r4 - 1*667r6 + 

0*430rs - . . . (12) 
(This profile is illustrated in Fig. 3.) 

x= 1, 
at 
z = 0, for all r (adiabatic base) (13) 

x = 1, t = 0, for all r (isothermal base) (14) 

The heat-conduction equation applied to the 
cylinder as a whole gives 

Rk (15) 
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FIG. 3. Assumed radial temperature profile at orifice and 
relevant eigenfunctions. 

First eigenfunction [Jo(2404r)] 
-- - __ Second eigenfunction [Jo(5.520r)] 
---__- Convective laminar “similarity solution”. 

In dimensionless form this becomes 

If the base is adiabatic, the second term on the 
L.H.S. of equation (16) is zero. The Nusselt 
number (based on radius, and wall area, corre- 
sponding to the heat etiering the cylinder) is 
then given by 

0 0 

l1 at 
b2 SF) ax z-0 

r dr (17) 
0 

If the base is isothermal, it is convenient to define 
a modified Nusselt number Nui based on the 
heat leaving the cylinder, as follows: 

3. SOLUTION OF CONDUCTION EQUATION 

Using the method of separating the variables 
described by Schneider [8], it can be shown that 
the general solution of equation (8) has the 
product form 

t = [A ehbx + B e-hbx] [C Jo(hr) + D Yo(hr)] (19) 

where A, B, C and D are coefficients and JO&‘) 

and Y&r) are zero order Bessel functions of the 
first and second kinds respectively. These are 
defined by 

(hr)2 (hr)4 
Jo(hr) =- 1 -- 2i- + 2q - 

(hr)6 
22.42.62 + ’ ’ ’ (20) 

W2 
Yo(hr) := Jo(hr) log, (hr) + ~~- -- 

22 

At r - 0, t is finite for all x. But Ya(0) = 
and hence D must be zero. Then clearly 

(21) 

i(Ej 
satisfies condition (9) for all h. Applying bound- 
ary condition (10) to equation (19), with 
D = 0, we find that 

A+B=l (22) 

whence 

t = [2A sin h(hbx) + e--hbz] CJo(hr) (23) 

Since from condition (1 I), r = 1, t = 0, for 
all x, h must be such that Jo(h) = 0. Reference 
to tables of Bessel functions shows that h has the 
following eigenvalues: 2*404,5.520,8*653,11*791, 
14.930, . . . Thus a general solution of equation 
(23) is 

t = “%m [2 A sin h(hbx) + e-hbz] C Jo(hr) (24) 
h= 2,404 
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For the lowest eigenvalue, the eigenfunction 
Jo(hr) is monotonic for 0 < r < 1. Larger 
eigenvalues yield radial profiles having waves in 
them which increase in number with the eigen- 
value. But any specified radial temperature 
distribution, such as equation (12), can be 
accommodated by assigning appropriate values 
to C in successive terms of the infinite series (24). 
Boundary condition (12) is in fact reproduced 
to an accuracy within 5 per cent by considering 
only the first two terms of the series solution 
(24), such that 

Fig. 4, where b = 1. The laminar flow protie is 
that of the “similarity solution”, where there is 
no stagnant fluid. The “no-flow” profiles diverge 
as x increases, such that, for b = 1, there is an 
adiabatic base temperature variation of up to 
0*15(To - Tl). The variation is inversely related 
to b for b less than about 1.8. For larger b the 
“no-flow” profiles merge into a single distri- 
bution which is probably valid for any inter- 
mediate base boundary condition. Comparison 

11 = 2.404, C = 0.83; 11 = 5.520, C = 0.17; 

h = 8.653.. . w, C = 0. (25) 

The eigenfunctions Jo(2*404r) and Jo(5*52Or) are 
shown in Fig. 3. 

It remains to evaluate A according to whether 
(13) or (14) is to be satisfied. For an adiabatic 
base we have, from equation (23), 

whence 

A = e-hb/2 cos h(M) (26) 

Nu, = i [0*43 tan h(2.404b) - X=X/I 

0.058 tan h(5*520b)] (27) 

For the isothermal base, equations (14) and 
(23) give 

FIG. 4. Axial temperature profiles for unit length-radius 
ratio. 
--___ Axial zero-flow profile with adiabatic base 

andb= 1. 
__- -- Axial zero-flow profile with isothermal 

baseand b =l. 
---- - - Convective laminar “similarity solution”. 

whence 

A = - e-J@/2 sin h(hb) (28) 

Nu,‘= ; [0*43 cot h(2.404b) - 

0.058 cot h(5.520@] (29) 

with the linear laminar profile suggests that 
correlation will be better where (a) there is 
stagnant fluid, as assumed in the analysis, so that 
t = 0 corresponds to x < 1, (b) b is large, which 
brings the “no-flow” profiles nearer the axes. 
The predictions made below for Ra, when flow 
ceases may therefore be less reliable at small b. 

4. LIMITING CONDITIONS FOR CONVECTION 

Before discussing values of tl associated with 
equations (27) and (29) for the limiting case of 
zero flow, it is helpful to compare the axial 
temperature profiles (obtained by writing 
Jo@) = 1 in (24), in conjunction with (25), 
(26) and (28)) and the heat transfer for the two 
base boundary conditions with each other, and 
also with those of laminar flow. 

Figure 5 shows the same comparisons for the 
heat transfer. As already implied, for b > 1.8, 
overall zero-flow heat transfer is insensitive to 
base condition within the isothermal and adia- 
batic limits. Then, for b > l-8, equations (27) 
and (29) reduce to 

For the temperature profiles this is done in where the length-based Nusselt number 
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FIG. 5. Zero-flow heat transfer as a function of length- 
radius ratio. 
___- Adiabatic base. 
__ ._ -- Isothermal base. 
_---- - Convective laminar “similarity solution”. 

Nut = bNu, is constant, and the overall heat 
transfer Q is proportional to tube radius, but 
independent of length. The hyperbolic tangent 
and cotangent terms in (27) and (29), which tend 
rapidly to unity as b increases, make it clear that 
these remarks hold for any specified orifice 
boundary condition which can be accommodated 
by equation (24). 

Equation (30) is obviously a good approxima- 
tion for either base boundary condition for b 
down to 0.9, where the zero-flow heat transfer 
coincides with that of the laminar “similarity 
solution”. For lower b it accurately represents 
the limiting heat transfer for convection only for 
some intermediate base condition. The iso- 
thermal base contributes increasingly to the 
overall heat transfer as b diminishes below 1% 
Meanwhile the wall heat transfer attains a value 
of 0.358 at b = 0.5 and is nearly constant 
thereafter. With an adiabatic base, Nur reaches a 
maximum of O-725 at b = 0.2, falling to 0.714 in 
the limiting case of b = 0. 

Nu,. = O-407, shown in Fig. 5 for the laminar 
“similarity solution”, corresponds to the follow- 
ing approximate relation between tl and Pr, due 
to Leslie and Martin [5], which has been experi- 
mentally confirmed [2] : 

135.5 
t1+ pr= 345.5 for 0.4 < Pr < co (31) 

The linear variation of Nu, with tl for Nur < 3 
is then given by 

Nu, = 
t1 

850 - 333/Pr 

The lower limiting value of Ra,. for convection, 
where the same heat transfer arises from zero 
flow, is obtained by combining (30) with (32), 
whence 

Rar = btl = 316 - $4 (33) 

which, as mentioned above, is of uncertain 
accuracy for small b. 

For mercury, the experiments of Bayley and 
Czekanski [7] have shown that, where 
2 < bc 12, the linear relation between Nu, and 
tl takes the form 

NW, = 0.0011 tl Pr for tl Pr < hm 7060 (34) 

The orifice radial temperature profile under these 
conditions was not reported. If it be assumed the 
same as for conventional fluids, i.e. according to 
(12), the criterion comparable with (33) is, from 
(30) and (34) 

Ra,Pr = 338 (35) 

The values of Ra, derived from (33) and (35) 
are lower than those so far reached in experi- 
mental investigations (where no departure from 
a linear relation between NM,. and tl has been 
observed), but, since Raraa3, there is no reason 
why they should not be attained in tubes of 
sufficiently small diameter. 
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R&sum&-Les conditions limites infkrieures de convection naturelle dans le thermosiphon vertical 
ouvert sont prtdites avec une temptrature uniforme de la paroi oti l’koulement tend vers ztro et est 
remplac& par la conduction. Le flux global de transport de chaleur est alors indkpendant de la longueur 
du tube mais proportionnel au rayon, & moins que le rapport longueur sur rayon soit en-dessous de 
1,8 environ, dans quel cas il dCpend aussi des conditions de tempkrature g l’extrkmit8 ferm&e. Le 
nombre de Rayleigh correspondant, qui est une fonction seulement du nombre de Prandtl, est estimt 

pour des fluides non m&alliques et pour un mBta1 liquide. 

Zusammenfassung-Fiir die unteren Grenzbedingungen bei freier Konvektion in einen senkrechten, 
oben offenen “Wtirmesiphon”, wo die StrGmung na.ch Null geht und die WPrmeleitung ausschlagge- 
bend wird, werden Vorhersagen gemacht. Der gesamte Wgrmeiibergang ist dann von der Rohrlgnge 
unabhlngig, aber proportional dem Radius, wenn das Verhlltnis Llnge zu Radius nicht unter 1,8 
liegt. Darunter h%ngt er such von den Temperaturverhlltnissen am geschlossenen Rohrende ab. Die 
entsprechende Rayleighzahl, die nur eine Funktion der Prandtlzahl ist, wird fiir nichtmetallische 

Fliissigkeiten und fiir fltisige Metalle abgeschitzt. 

AHHoTaq~sr-PaCC~IIITaHbI HMiKHLie IIpefieJIbIIhIe yCJIOBEIfi CBO6OWIOti KOHBeKqHH B BepTHKan- 

bIIOM OTKpbITOM TepMOCI$OHe C IIOCTORHHOti TeMIIepaTypOfl CTeHKH, KOrAa KOHBeKqllH 

CTpeMIlTCR K HyJIIO II 3aMeIQaeTCfI TeIIJIOIIpOBO~HOCTblO. 0611@3 TeIIJIOBOi IIOTOK B 3TOM 

CJlyYae He DaBIICHT OT AJlMHbI TPY6bI, HO llpOIlOp~HOHaJIeII paAtlyCy, eCJIIl OTHOLUeHHe J(JlliHbI 

K paJJHyCy He MeHbIIIe 1,8. B IIOCneAHeM Cnyqae OHa 3aBHCIIT TaKme OT TeimepaTypHbIx 

yCJIOBM1.i Ha 3aIEpbITOM KOHIJe. OIIpeAeJIeHO COOTBeTCTByIOIqee WICJIO PeneR AJIFI HeMeTaJI- 

~IllV~‘Cl~IlX ;KH;lKOCTefi II it(lIAKIIX Mt?TaJIJIOB, RBJIHIO~eeCR +yHKqHefi TOJIbKO %4CJIa npaHATJIfl, 


